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Experiments on Ekman layer instability 
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Laboratory measurements were made of the instabilities of the Ekman layer 
using hot wire anemometers. The apparatus consisted of two parallel circular 
rotating plates forming a spool; the air was admitted through screens at  the outer 
edge and removed through a screen cage at  the hub. In  the Ekman layers formed 
on the inner surfaces of the plates, measurements were made of the mean veloci- 
ties as functions of r and a ;  the velocity fluctuations were also measured. 

It appears that the instability labelled type I1 by Faller always occurs first, 
and at zero Rossby number the critical Reynolds number is 56 +_ 2. Thisinstability 
originates in the boundary layer, but at  slightly higher Reynolds number the 
fluctuations persist far into the geostrophic region, probably as inertial waves 
excited by the boundary -layer fluctuations. 

At higher Reynolds number another instability appears of shorter wavelength 
and slower speed. This instability is confined to the boundary layer and is 
apparently the type I reported by Faller. 

The phase speeds, frequencies, and wave-front orientations of both type in- 
stabilities have been measured. 

~ 

Review of previous work 
During the drift of the ‘Fram’ across the polar sea (1893-96)) Fridtjof Nansen 

observed that the direction of drift of the surface ice was 20-40 degrees to the 
right of the wind, and attributed this phenomenon to the effect of the earth’s 
rotation. Nansen further reasoned that the direction of motion of each water layer 
must be to the right of the layer above it since it is affected by the overlying layer 
much as the surface layer is affected by the wind (Sverdrup et al. 1942). 

At Nansen’s suggestion, Ekman (1905) analysed this problem, and investi- 
gated the flow resulting from a balance of pressure gradient, Coriolis, and fric- 
tional forces. Ekman considered the eddy viscosity, A ,  to be constant, and showed 
that the important boundary-layer velocities are confined to a layer of thickness 
J(A/pf) ,  which he called the ‘depth of frictional resistance ’. Within the boundary 
layer, the velocity is represented by a vector which changes in length exponen- 
tially with depth, and angle linearly with depth. This is the familiar Ekman 
Spiral. Although Ekman considered an eddy viscosity, the analysis is applicable 
to laminar flows if the constant eddy viscosity A is replaced by a constant dy- 
namic viscosity p. The Ekman solution for the components of a bottom boundary 
current under a velocity V in the x direction which is independent of depth is 
given by V, = V (  1 - e-B/o cos z /D) ,  

V, = V e-210 sin zlD. 
34-2 
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Because of the similarity of the boundary-layer profiles in Ekman flow and the 
flow over a rotating disk in a fluid at  rest (Schlichting 1960), i t  is interesting to 
consider the results of some early instability experiments with rotating disks in 
free air. Theodorsen & Regier (1947) made measurements with a fixed hot wire 
anemometer over a disk rotating in free air, in which they found a disturbance 
occurred at  a transition Reynolds number of 1440, with the following definitions 

Re, = (SZr) 8/v, 6 = 2.58(v/Q2)4. 

This corresponds to a Reynolds number of 560, when Re is defined as 

Re = (Qr)/(vQ)&. 

Smith (1947) used a hot wire probe adjacent to a vertical rotating disk in air, 
and found sinusoidal disturbances to occur a t  

620 < Re,, < 760, 

where 6" = 1*37(~/s1)4. 

Eliminating the 1.37 factor, this corresponds to a Reynolds number range of 

450 < Re < 555. 

Smith, using a double wire probe, determined the phase velocity to be C = 0.2 
(rQ), and the angle of orientation to be 14 degrees with respect to the tangential 
direction. 

Gregory, Stuart & Walker (1955) used the china clay technique to determine 
the presence of instability on a rotating disk in free air. This technique is limited 
in that i t  is capable of demonstrating the presence only of stationary modes of 
disturbance. They found that an instability occurred at  Re = 1.8 x lo5, with the 
Reynolds number defined as 

Re = (Qr)  r / v .  

This reduces to a critical Reynolds number of 435 when the second r is replaced 
by the Ekman depth D in the computation of Re. 

The direction of propagation of the waves as given by the china clay picture 
was 14 degrees from the radial direction, in good agreement with Smith's work 
and the theoretical calculations of Stuart in the same paper. Stuart's analysis 
indicated the instability to be in the form of a series of horizontal roll vortices 
with spacing related to the boundary-layer depth, an hypothesis which was 
reasonably well confirmed by the experimental work. Stuart concluded that the 
curvature terms had little influence on this inviscid instability. 

Stern (2960) considered the theoretical problem of a fluid of relatively shallow 
depth in a rotating annulus, with fluid being forced in at the outer rim and with- 
drawn at  the inner rim. This establishes a geostrophic azimuthal velocity over an 
inflowing viscous boundary layer. Stern theoretically established the possibility 
of the existence, a t  large Taylor numbers, of an instability which draws its energy 
from the ageostrophic perturbation component of the mean flow. He referred to 
this as a ' body-boundary ' mode, and suggested that for Taylor numbers as large 
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as 2.5 x lo3 the flow should be unstable at Reynolds numbers below 80, and that 
the preferred mode of disturbance should have a radial wavelength given by 

A, = (2m/m) Ta* D, 

where T a  is the Taylor number 

H is the total fluid depth, and m is a constant of order unity. 
Arons, Ingersoll & Green (1961) conducted a series of experiments in which 

they supplied water to the centre of a rotating tank partially filled with water, 
and allowed the surface to rise with time. They observed a highly organized 
pattern of instability in the form of concentric cylindrical sheets of water which 
rose as sharply defined jets through the entire depth of the fluid. This instability 
was confined to the narrow Reynolds number range 

1-6 < Re = VDjv < 3.6 

TU = !2H2/v, 

and had a wavelength given by h = 2.0Tu) D .  
Faller (1963) conducted both a theoretical and an experimental study of 

Ekman layer instability in which he considered a rotating tank partially filled 
with fluid having a distributed source around the outer rim and a concentric sink 
at the centre. His analysis utilized an expansion in Rossby number of the non- 
dimensionalized dependent variables of the Navier-Stokes equations to form an 
ordered set of equations which could be solved subject to the appropriate bound- 
ary conditions. He found the radial component of the interior flow to be zero to 
the second order tangential velocity to be given by 

For his experimental work, Faller used a rotating tank four metres in diameter 
with a pumping system to withdraw water from the centre and distribute it 
uniformly around the outside. The boundary-layer circulation was observed by 
the introduction of potassium permanganate dye crystals near the outer rim, 
which tended to form streaklines as the fluid flowed past. Spiral bands of dye 
which formed were interpreted as regions where the layer of dyed fluid became 
deeper or shallower due to the superposition of unstable perturbations on the 
basic boundary-layer flow. Photographs of the bands were measured to give a 
critical radius at  which the bands were first observed, their orientation, and their 
spacing. 

Faller used the zero-order solution for the geostrophic velocity 

V, = S/nrD, ( 2 )  

(3) 

where X is the mass flow rate, in the definitions of Reynolds number and Rossby 
number 

so that both parameters could be expressed in terms of only the two independent 
parameters, X and Q. The critical Reynolds number, in the limit of zero Rossby 
number, was found to be Re = 125 5. The wavelength, non-dimensionalized by 
the Ekman depth, varied from AID = 9.6 to AID = 12.7 with an average of 10.9. 

Re = X/nrv, Ro = X/2nr2!2D, 
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The average angle from the tangential direction was found to be E = 14.5 degrees 
to the left, with a standard deviation of 2.0 degrees. Motion pictures of the bands 
showed that in all cases they moved radially inward. 

Barcilon (1965), in a theoretical paper, obtained analytic solutions of the per- 
turbation equations using an Ekman mean velocity profile. He did not, however, 
arrive a t  a value for a critical Reynolds number since his method of solution was 
not accurate at  the relatively small Reynolds numbers where instability has been 
observed. 

Lilly (1966) and Faller & Kaylor (1966) a t  about the same time, presented 
numerical solutions to the Ekman layer problem. Lilly used a perturbation 
analysis and numerically solved both the complete set of equations and the Orr- 
Sommerfeld equation (OSE). Both solutions exhibited instability, with a mini- 
mum Reynolds number of 55 for the complete set and 85 for the OSE. Stationary 
waves were found to be unstable above Re = 115. Lilly suggested that the sub- 
stantially lower critical Reynolds number for the complete set indicated the 
existence of a separate instability mechanism, associated with the Coriolis terms, 
and verified this by means of a simplified analytic solution. He designated this as 
a ‘parallel instability’, and noted that it was of the viscous type since it vanished 
a t  high Reynolds numbers. The numerical solution indicated that the viscous 
instability should be oriented at small or negative (to the right) angles wit11 
respect to the tangential flow. 

Faller & Kaylor obtained numerical solutions to the time dependent non- 
linear equations of motion starting with a perturbation on the finite difference 
equivalent of a laminar Ekman solution. Their results confirmed the presence of 
two distinct modes of instability; one with h = l l D  and E = 12 degrees, and R 

longer faster wave at  negative E with a critical Reynolds number in the range 
50 < Re < 70. 

In a recent experimental paper, Faller & Kaylor (1965) have reported the 
observation of the viscous instability occurring at  lower Reynolds number, which 
they have designated type 11. The apparatus used was essentially the same as 
was used earlier by Faller in his studies of the inviscid instability waves (type I). 
The type I1 waves were found to occur sporadically, move rapidly, have a wave- 
length of 22 to 33 times the Ekman depth, and to be oriented at an angle varying 
from 5 degrees to the left ( + 5 degrees) to 20 degrees to the right ( - 20 degrees) 
of the tangential direction. These waves occurred at  a minimum Reynolds num- 
ber of Re = 70. It was observed that when the type I1 vortices attained finite 
amplitude before the type I were established, the combined circulation became 
unstable to a small scale mode, which then interacted with the previously 
established flow to produce an abrupt transition to turbulence. 

P. R. Tatro and E .  L. Mollo-Christensen 

Description of experiment 
Ekman boundary layers were generated by the removal of air from the centre 

of a rotating tank having the general shape of a flat spool with large flanges. Air 
was admitted at the outer edge after passing through silk screens which brought 
it up to solid body rotation. 
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Measurements were, made of the mean velocity field between the plates at  
several radial positions; the onset, of boundary-layer instability was observed as 
well as its further development, and the waves were measured. Hot wire anemo- 
meters were used for all measurements, and hot wire outputs were recorded as a 
function of position using an X-Y recorder. 

Experimental equipment 
The rotating tank consisted of two 36 in. diameter circular disks of 0.5 in. 

Plexiglas, held 3.00 in. apart by a hollow core a t  the centre and six spacers around 
the rim (figure 1). The main hollow shaft runs in two bearings, is driven by the 
belt from a variable speed hydraulic drive, and is connected through a rotating 
seal and a flowmeter to a variable speed vacuum cleaner. 

FIUURE 1. Diagram of apparatus. 

Covering the space bet,ween the two outer rims are two 50-mesh silk screens 
spaced 0.5 in. apart. A Plexiglas baffle between the disks allows air to enter the 
tank only through 0.62 cm slots adjacent to the disks. Another silk screen was 
placed at  a 3 in. radius around the central perforated hub. The entire system is 
supported by a steel frame which rests on rubber pads and can be levelled by 
screw adjustment. 

The upper disk has five access holes, Q in. diameter, at  radii of 6, 8, 10, 12 and 
14 in., to allow the insertion of hot wire assemblies. A slip ring assembly, consist- 
ing of nine silver rings with two silver-graphite brushes in each ring, is mounted 
on the top disk. As a matter ofrouting, two rings were used for each hot wire lead. 
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The traverse of the hot wire probe is motor driven, and connected to two precision 
potentiometers so that hot wire height and angle can be read as voltages. Hot 
wire signals were monitored on an oscilloscope, and recorded on an X-Y  or an 
X-t recorder. 

P. R. Tatro and E. L. Mollo-Christensen 
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FIGURE 2. Traces of hot wire output voltage at constant a t  afferent Reynolds numbers, 
showing onset of instability. Vertical level offset changed for each trace. 

Experimental techniques 
To detect the onset of instability, a hot wire was placed in the boundary layer 

approximately one Ekman depth from the boundary, and the X - Y  recorder used 
to plot the hot wire voltage as a function of time. With the tank operating at a 
fixed rotational speed, the mass flow through the tank was incrementally in- 
creased, and the hot wire voltage recorded. For relatively low values of mass 
flow the recorder sweeps were essentially straight lines. As the mass flow is in- 
creased, however, the hot mire output voltage would begin to oscillate, and these 
oscillations plotted against time would be sinusoidal in appearance, as in figure 2. 
The lowest value of mass flow for which the oscillations could be observed was 
taken as the critical point. 

At the critical point, the hot wire was rotated so as to have maximum sensitiv- 
ity to the radial component of velocity, and then driven vertically to plot a 
vertical profile of radial velocity through the boundary layer. Since the theo- 
retical Ekman radial velocity reaches a maximum at Z / D  = in-, the measured 
boundary-layer thickness S was computed by measuring the Z co-ordinate of the 
maximum in the radial velocity profile, and taking S = 4Z/n-. 

At the same critical point, the geostrophic velocity well above the boundary 
layer was measured by means of a calibrated hot wire anemometer. 
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The hot wire signal, as monitored on an oscilloscope or recorder, is quite regular 
in appearance with increased mass flow from the critical point up to a second 
well-defined point. At this point, the character of the wave changes markedly and 
quickly. Figure 3a shows the wave-form just below this point, and figure 3 b  
shows its appearance at  this point. It appears that a different instability mechan- 
ism has occurred. 

By utilizing a hot wire probe having two sensing wires and making phase 
comparisons of the signals, it is possible to determine the wave-front orientation 
and the phase speed. An oscilloscope was used with Lissajous figures to determine 
the in-phase point, and a double channel chart recorder to determine phase 
differences. 

A 

B 

FIGURE 3. Wave-forms of hot wire output showing development near Re = 125. A, Wave- 
form a t  Reynolds number 136; B, wave-form at Reynolds number 130. 

Results 
The geostrophic velocity V, was measured as a function of the radial position 

for several combinations of parameters. Figure 4 is a typical V,(r) result. The 
measured velocities were in all cases less than the theoretical values based on 
mass flow, with the measured values approaching the theoretical as the Rossby 
number approached zero. 

Profiles of the tangential velocity Vand the radial velocityK made through the 
boundary layer below the first critical point were in good agreement with Ekman 
theory. Figure 5 shows sample profiles. Above the critical point, the instability 
shows up in the V ( z )  and K ( z )  profiles, but is confined to the boundary layer, 
figure 6. 

For each combination of mass Aow and rotation at  which a critical point was 
determined, a Reynolds number and Rossby number based on local measured 
values of the parameters were computed 

Re = T$s/v, R, = 5/2!2r .  
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Figure 7 shows a plot of the critical Reynolds number versus Rossby number. 
The instability identified by Faller & Kaylor 1965 as type I1 always appeared 
first. A least-squares linear regression for the type I1 was found to be 

ReIIc = 56.3 + 116.8R0. 

~ 1 1 1 1 1 1 1 1 1 1 1 1  

120 

110 

100 

- 

- 

- 

0 
7 90 

- 

8 0 -  

70 

60 

50 

'40 

30 

- - 
b *  

- 

- 

- 

- I 

201  I I ' I ' I ' ' I I I ' ' I 
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Radius (in.) 

FIGURE 4. Azimuthal velocity vs. radius. V, measured, V, theoretical based on ideal Ekman 
layer transport and V(2)  given by equation (1).  

Hot wire voltage ' 

FIGURE 5 .  Hot wire voltage vs. 2 for wire aligned with rank radius (Ve) and wire normal 
to radius (V,), below critical Re. 
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The measurements of geostrophic velocity are considered to have an accuracy of 
2 0.5 cm sec--l, and the boundary-layer thicknesses are considered accurate to  
within 0.004 cm, hence the critical Reynolds number for type I1 waves is taken 
to be ReII, = 56.3 2.0. 
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FIGTTRE 6. Hot wire voltage ws. 2 just above critical Re. 
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FIGURE 7. Critical Reynolds number 08. Rossby number for types I and I1 instabilities. 
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The marked change in the instability, discussed earlier, was identified as the 
type I instability originally reported by Faller (1963). A linear regression for ten 
points for this instability yielded 

ReIc = 124.5 + 7.32R2, 

which was in such close agreement with earlier work that it was not felt necessary 
to make further measurements of the type I. The experimental accuracy in ReIc 
is estimated as 2 yo. 

f vr 

/ 
-c 

FIGURE 8. Diagram of measured wavelengths, phase velocities and wave- 
front orientations. 

The wavelength and orientation of both types of waves were determined with 
a double wire probe, and the general arrangement of these results is shown in 
figure 8. The non-dimensional wavelength AID of the type I1 waves was found to 
vary from AID = 25.0 to AID = 33.0 with a mean of 27.8 and a standard deviation 
of 2.0. Considering the characteristic angle of the Ekman spiral with respect to 
the interior flow to be a positive angle, the orientation of the type I1 varied from 
0 degrees to - 8 degrees. The phase velocity was approximately 16 yo of the geo- 
strophic velocity and directed radially inward. 

The type I waves were found to have a nearly constant angle of 8 = 14.6 
degrees with respect to the geostrophic flow with a standard deviation of 0.8 
degrees. The non-dimensional wavelength was found to be h / D  = 11-8, and the 
radially inward phase velocity was 3.4 yo of the geostrophic velocity. 

As has been shown, the type I1 instability originates in the boundary layer. 
As the Reynolds number is increased above the critical value, however, the 
oscillations do not remain confined to the boundary layer, but rather seem to 
propagate throughout the entire interior region. Figure 9 shows a vertical profile 
of the radial velocity component with these oscillations superimposed. They 
extend without noticeable attenuation of amplitude up through the geostrophic 
region. 
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Discussion 
All earlier attempts to measure or define an instability point in Ekman flow 

have depended on techniques which were responsive only to stationary or at best 
slowly moving waves. The fast response and high sensitivity of a hot wire anemo- 

Pattern caused by interference 
with inertial waves radiating I- down from upper boundary 

! 

Hot wire voltage 

FIGURE 9. Hot wire voltage vs. height 2 showing oscillations penetrating into geostrophic 
region. The wire was moved slowly in the 2-direction at constant speed, so that oscillations 
would be shown superimposed on mean velocity profile. 

meter rotating with the system have made possible the detection of a faster, 
longer wave, and allowed the direct measurement of the pertinent local para- 
meters. 

The vertical profiles of the horizontal velocity components exhibit oscillations 
throughout the interior region. We infer that these are inertial waves from the 
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following arguments. Consider a time-dependent perturbation equation for the 
interior, which assumes small Rossby number 

P. R. Tatro and E. L. Mollo-Christensen 

av - + 2s2 x v = - V(p1p).  
at 

Operating on this equation with CURL to eliminate the pressure gradient term, 
and assuming a periodic solution of the form 

{u, v, w} = (a, 0, a> exp [ i ( h  + Zy + mz - wt)]  

yields three linear homogeneous equations in three unknowns. The requirement 
that the determinant of the matrix of coefficients vanish for the existence of a 
non-trivial solution yields 

which may be satisfied either by m = 0, or by 

m =  k i d (  k 2 + 1 2  ) .  
1 - (PW/w2)  

Three possibilities now exist: (1) w c 2 0 ,  the radical is imaginary and the wave 
has a vertical wave number; ( 2 )  w > 2Q, the radical is real and the wave has an 
exponential vertical decay; and (3) w = 2Q, in which case the radical becomes 
infinite and the choice m = 0 must be taken. 

The type I1 instability has been shown to originate in the boundary layer, and 
it generally occurs with w > 2Q. As the amplitude increases, however, an inertial 
response seems to be stimulated; the first subharmonic becomes dominant above 
the boundary layer such that w is less than 2Q and the wave is found throughout 
the interior region. 

The type I instability occurred initially in the boundary layer, and a t  its onset 
was confined to the boundary layer. Since the type I1 always occurred with the 
type I, and the first manifestations of turbulence were generally noticed at  only 
slightly higher Reynolds number, the vertical development of the type I was not 
investigated further. 

Conclusions 
Although it is apparent from the measured variation of the tangential velocity 

with r (figure 4) that the flow outside the boundary layer is not purely geostrophic, 
the results show that the instability depends upon local measured Reynolds 
number and Rossby number only (figure 7). 

The occurrence of oscillations which might be inertial waves is interesting. 
Before one can be sure further measurements of phase surfaces and wavelengths 
will be necessary. If the observed fluctuations are indeed inertial waves, any 
theory to account for instabilities of the Ekman layer for which w < 2Q will have 
to include a radiation boundary condition at Z = 00. 

Further measurements will also be required before one can describe the details 
of the process of transition to turbulence in an Ekman layer. From preliminary 
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observations of transition, i t  is apparent that bursts of high frequency fluctu- 
ations do appear, as they do in a flat plate boundary layer, and that a low 
frequency periodic structure may persist to Reynolds numbers well above tran- 
sition. 

The type I1 instability always occurred first, and at a sufficiently low Reynolds 
number such that the atmosphere would be above critical Reynolds number at 
wind speeds as low as six ynots. The inertial waves stimulated by the boundary- 
layer oscillations extended throughout the interior region of the rotating model, 
and in a geophysical situation could account for spatial periodicity in tempera- 
ture or humidity measurements well above the atmospheric Ekman layer. 

Lieutenant-Commander P. R. Tatro, U.S.N., was supported by the U.S. Navy 
during the work; the work was supported by NASA under Grant NsG-496. 
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